

HVAF Flash Carbide As Economical Alternative To Electroplated Hard Chrome

Andrew Verstak

Kermetico Inc., U.S.A.

Benno Gries,

H.C. Starck Surface Technology and Ceramic Powders GmbH, Germany

Problem description:

- During 30 years of development, thermal spray coatings (mainly HVOF) replaced only 5% of Electroplated Hard Chrome (EHC)
- Main reason of EHC still remains in the market is its COST, which is dramatically lower that developed alternatives
- The cost of direct materials used in HVOF coatings is 7 times higher then the cost of chromium in EHC.
- Main developments of EHC alternative were focused on using lower-cost materials and increase of deposition efficiency DE

Problem description (cont.)

The most economical coating is not the one sprayed with the low-cost material and the highest DE.

It's the thinnest coating.

Problem description (cont.)

EHC market is dominated by a very thin coating, known as "Flash Chrome" (15...20 micron)

Flash Carbide Principles

The WC-10C04Cr HVAF Flash Carbide coating technology is based on the similar to Flash Chrome principles:

- The part is ground to the lowest tolerance dimension
- The coating thickness is comparable to tolerances, set for the final coated part (i.e., 20-25 micron or less)
- The coating roughness is low "ground-like" Ra 1.5-1.7 micron
- Such coating does not require dimensional grinding
- Polishing to Ra 0.2-0.3 micron removes only 5 micron of "assprayed" thickness

The final cost of Flash Carbide is 1/10 of conventional WC-coating

Requirements for Flash Carbide:

- Thin WC-10C-4Cr coating (20-25 micron after polishing) must be dense to provide adequate corrosion resistance
- As-sprayed coating roughness must be low enough to avoid the need for grinding (Ra less than 2.0 micron)
- The coating material must not degrade during application (= should not become brittle)
- The technology should be reproducible

Flash Carbide: ASTM B117 Salt Spray Corrosion Test AK06 HVAF WC-10Co4Cr: 15 µm (0.0006") thickness as-sprayed

Flash Carbide: ASTM B117 Salt Spray Corrosion Test AK06 HVAF WC-10Co4Cr: 25 µm (0.0010") thickness as-sprayed

0 h 168 h 336 h 504 h 672 h 1008 h 1150.0.08

Flash Carbide: ASTM B117 Salt Spray Corrosion Test AK06 HVAF WC-10Co4Cr: 15-μm Coating micrograph after 1008 hours of test

Mechanical Properties of (Thick) HVAF and HVOF WC-10Co-4Cr Coatings

	HVAF (AK06)	HVOF (JP)	HVOF (JP)
Powder Size (µm)	- 15	25/5	45/15
Spray System	AK06	JP-5000 ®	JP-5000 ®
Porosity (%)	<0.5	0.9	0.8
HV ₃₀₀	1444	1250	1180
ASTM G65 m.B (mg)	14	21	18
E-Modulus (GPa)	325	n.d.	n.d.
Cavitation Wear (mg)	1.4	2.8	4.7
Metallic Co (%)	ca. 5.5	(zero)	ca. 4
Ra (µm)	1.5 – 1.8	2.9	5
٨			-

Structure of HVAF and HVOF WC-10Co-4Cr coatings

HVOF, 25/5µm. Bright: eta phase

HVAF. Cermet structure with few eta phase

HVOF, 45/15µm. Less eta phase, cermet structure still visible

Flash Carbide: Factor affecting surface roughness

Ra (1-pass) ▲ Ra (multi-passs) ■ Ra (multi-pass, large DIA)

Flash Carbide Process

- Dimension-grind the part to lowest tolerance, Ra 0.5 micron
- One pre-heating/cleaning pass with the gun flame
- Pass(es) of coating, HVAF fine/dense WC-10Co-4Cr powder (30 micron)

- Polish surface to needed roughness (remaining 22-25 micron of coating)
- Total cost of coating to 38 mm OD x 300 mm L rod, Ra 0.2 μm finish: <15 USD

The concept of "Flash Carbide" coating is developed, targeting deposition of high-quality WC-10Co-4Cr coatings at extremely low cost due to reduction of coating thickness and elimination of the need for dimensional grinding in the process.

